National Center for Emerging and Zoonotic Infectious Diseases Division of Foodborne, Waterborne, and Environmental Diseases

The large burden of Salmonella and Campylobacter infections from poultry

Patricia M. Griffin, MD | Chief, Enteric Diseases Epidemiology Branch
Virtual National Food Policy Conference Series, held by the Consumer Federation of America | March 23, 2021

Topics

Salmonella

- Most important bacterial foodborne pathogen
- Three serotype short stories
 - Typhimurium decreasing
 - Enteritidis increasing
 - Infantis increasing

Chicken

- The major U.S. source of protein
- A major source of Salmonella illness
- The reason for Salmonella serotype decreases and increases
- The major source of Campylobacter illness

Campylobacter

- 2nd most common cause of bacterial foodborne illness
- Chicken is the major source

Summary and conclusion

Salmonella is the biggest bacterial foodborne illness challenge in the United States

Pathogen	Foodborne illnesses	Foodborne hospitalizations	Foodborne deaths
Salmonella	1,000,000	19,000	380
Campylobacter	845,000	8,500	80
E. coli O157	63,000	2,100	20
Listeria	1,600	1,500	260

By the mid-20th century typhoid fever (caused by S. Typhi) had declined, but nontyphoidal salmonellosis was rising. It is now our major foodborne disease problem.

By the mid-20th century typhoid fever (caused by S. Typhi) had declined, but nontyphoidal salmonellosis was rising. It is now our major foodborne disease problem.

Highly resistant Salmonella strains continue to emerge in a wide variety of food animals. People are "incidental hosts."

Chickens Cattle Pigs

Incidence of serotype Typhimurium infections has declined

Both Salmonella Typhimurium and Heidelberg infections are declining

Typhimurium
#1 until 2008

J
Now #2

Heidelberg

#4 in 2003

Now #15

Why? Possible reason:

Both targeted by same poultry vaccine, used on many broiler farms

Chicken is a major source of these infections

~~

In 2008, Enteritidis surpassed Typhimurium as the most common Salmonella serotype causing human illness

Annual incidence of infection with Salmonella | by serotype, USA

Enteritidis used to cause many egg outbreaks, now it causes more chicken than egg outbreaks

Incidence of Enteritidis infections has varied with its sources

2005 began the chicken years

2005 began the chicken years

2005 began the chicken years

We used to buy mostly whole chickens, now buy most as cut-up parts or processed

Among Salmonella illnesses transmitted by chicken in outbreaks, % of caused by the most common serotypes, by year

Emergence of multidrug-resistant (MDR) Salmonella Infantis from chicken

2014

- FDA isolated MDR Infantis from <u>retail chicken</u>
- CDC identified a few cases of MDR Infantis in <u>humans</u> who had not traveled
- Distinctive, similar PFGE subtype patterns

Later investigations

- Found MDR Infantis in many poultry flocks
- Isolates from chickens and humans very similar by whole-genome sequence
- Human illness is most often linked to consumption of chicken

Annual incidence of infection with Salmonella | by serotype, USA

Multidrug resistant (MDR) Salmonella Infantis infections have spiked since 2016

MDR chicken isolates have typical pulsed-field gel electrophoresis (PFGE) or whole genome sequence (WGS) pattern; Data are preliminary, from the National Antimicrobial Resistance Monitoring System (NARMS) and PulseNet

Multidrug resistant (MDR) Salmonella Infantis infections have spiked since 2016

MDR chicken isolates have typical pulsed-field gel electrophoresis (PFGE) or whole genome sequence (WGS) pattern; Data are preliminary, from the National Antimicrobial Resistance Monitoring System (NARMS) and PulseNet

Chicken consumption has increased markedly since 1909 Now the #1 protein eaten in USA

IFSAC estimates that chicken is one of the top 2 sources of all Salmonella illnesses

Campylobacter is the #2 cause of bacterial foodborne illnesses in the United States

Pathogen	Foodborne illnesses	Foodborne hospitalizations	Foodborne deaths
Salmonella	1,000,000	19,000	380
Campylobacter	845,000	8,500	80
E. coli O157	63,000	2,100	20
Listeria	1,600	1,500	260

IFSAC estimates that chicken is responsible for 58% of Campylobacter illnesses

Estimates of <u>chicken-associated</u> illnesses caused by <u>Salmonella</u> and <u>Campylobacter</u>

Salmonella: 14.3% of 1,000,000 = 143,000

Campylobacter: 58.3% of 845,000 = 492,000

635,000 illnesses each year

-CDC annual estimates-----

Pathogen	Foodborne illnesses	Foodborne hospitalizations	ſ
Salmonella	1,000,000	19,000	
Campylobacter	845,000	8,500	
E. coli O157	63,000	2,100	
Listeria	1,600	1,500	

Foodborne deaths
380
80
20
260

A central problem: lack of surveillance & investigation on farms

- Few incentives for decreasing carriage of human pathogens by farm animals
- No routine, ongoing surveillance on farms for pathogens that cause foodborne illness
- Typically, by the time CDC finds that many people are getting sick, a pathogen has spread widely on farms
 - Only 1 of ~20-29 human infections diagnosed

Investigations of human illness usually stop outside the farm, so we don't learn how to prevent illness

Summary

- Chicken is #1 protein consumed in United States
- Salmonella is our most important foodborne bacterial cause of illness and death
 - Typhimurium infections have been declining (now #2)
 - likely related to vaccination of chickens
 - Enteritidis infections increased (now #1)
 - when it got into broiler flocks
 - Infantis infections markedly increased (#14 → #6)
 - due to emergence of a highly resistant strain in broiler flocks

Summary

- Campylobacter is 2nd most common cause of bacterial foodborne illnesses
 - Most infections,~58%, attributed to chicken
 - Most important source of chicken-associated illnesses
- The burden of chicken-associated illnesses is large
 - ~635,000 illnesses/year caused by Salmonella and Campylobacter

We can and must markedly decrease illnesses

Need multi-pronged approach

- Farm measures, e.g., vaccination, hygiene, audits
- Slaughterhouse methods, e.g., standards
- Retail methods, e.g., buying agreements, industry standards

Reasons for optimism

- Vaccination can be effective
- Poultry industry has eradicated from flocks some Salmonella serotypes that make poultry sick
- The UK & France have markedly decreased Salmonella infections using vaccination of poultry, targeting of particular serotypes, hygiene measures on farms, legislation, and investigation.

Let's collaborate to fix this bug in the food safety system

THE NEW YORKER

Annals of Food | FEBRUARY 2, 2015 ISSUE

A Bug in the System

Why last night's chicken made you sick.

BY WIL S. HYLTON

Current and former members of these groups contributed to this work

- CDC's enteric diseases epidemiology, outbreak, and laboratory branches
- State and local public health departments
- Food Safety and Inspection Service,U.S. Department of Agriculture
- U.S. Food and Drug Administration

Enteric Diseases Epidemiology Branch

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

